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Abstract

This paper generalizes the results in [1] to n-dimensional spaces.
For n-dimensional spaces, tighter upper bounds on the number of intersection points

of two or more polynomials are given. Using the upper bounds, the lower bounds on

the minimum distances and the generalized Hamming weights of linear codes defined

on the curves in high dimensional spaces are obtained. For large enough h, the exact

values of the generalized Hamming weights of linear codes defined on the curves in high

dimensional spaces, dh(Cr), are given.
By using the generalized Bezoflt theorem and the new approach, more efficient linear

codes defined on the curves in high dimensional spaces are constructed, which are better

than the AG codes and the, improved AG codes on the same curves.

Index Terms: Bezout's theorem, minimum distance, generalized Hamming weights, algebraic-

geometric codes, linear codes.

1 Introduction

For error-correcting codes, the minimum distance is one of most important parameters. It

is used to measure the code's capacity of correcting errors or detecting errors or both [3].

The minimum distance d of a linear code C is defined by

d __ min {d(u, v)},
u,vEC

uf:v

where d(u, v) expresses the Hamming distance between u and v.

For an In, k] linear code, we can consider its generalized Hamming weights, which are

the generalization of minimum distance and defined as follows:
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Definition 1.1 For any code C of block length n over GF(q), define the support X(C) by

X(C) : {i I ¢ 0 /or some (c,, c2,-", c.) e C},

and the support weight ws(C) by

ws(C) = IX(C)l.

Let C is a linear [n, k] code over GF(q). For any r with 1 <_ r <_ k, the r-th generalized

Hamming weight of C is defined as

d_(C) = min{ws(D) I D is a r-dimensional subcode of C}.

The weight hierarchy of code C is defined as the set of generalized Hamming weights

{d,(C), d2(C),..., dk(C)}.

It is easy to see that dl(C) is the minimum distance or the minimum Hamming weight
of code C.

Let C be a q-ary [n, k] linear code, we have the following properties of the generalized

Hamming weights:

1) (Monotonicity) 1 _< dl(C) < d2(C) < ---< dk(C) <_ n.

2) (The generalized Singleton bound) dH(C) <_ n - k + h, for h = 1,2,...,k.

These properties were proved for cases q = 2 in [4]. When q is a power of any prime,

the proof is the same.
Both the determination of the minimum distances and the determination of weight

hierarchy for linear codes in full are difficult. A more modest goal is to find acceptable

bounds on these weights. The weights of geometric Goppa codes were discussed in [16] and

[6]. The bounds on the minimum distance and the generalized Hamming weights of the
codes defined on the curves in two-dimensional space were given in [1].

Definition 1.2 Let X = (Xl, X2," • ", Xn), D{/1,]2,...,1p} denotes the number of distinct points
of the intersection of polynomials fu(X) = O, for # = 1,2, ...,p.

Definition 1.3 Given a sequence of polynomials {f.(X)lu = 1,2, ..., r}.

D (_) = max{D{f;,,/;2,...,f;p}lA1,--., Ap _< r},

where X = (Xl, x2,..., Xn) and f_, expresses a linear combination of fi for i = 1, 2, ..., )_u,

and the coefficient of f_, is 1 i.e., f;, = f_, + _\,=-_1 cifi.

Let LS = {P1, P2,'", PN} be a set of points in the n-dimensional vector space over

GF(q), in general, we consider the points in a algebraic curves, i.e., the rational points of a

algebraic curve. Let H, = {hi, h2,.--, hr} be a set of monomials or polynomials with vari-

ables Xl, x2,---, x_. For every hi, we have a evaluated vector (hi(P1), hi(P2), • • ", hi(PN)) T.

When there is no possibility of any confusion, we also use h_ to denote its evaluated vector,

i.e., we let hi = (hi(P1),hi(P2),'" ", hi(PN)) T. Let Cr be the [g, g- r] linear code defined

by a parity check matrix H, = [hl,h2,'",hr] T. The relationship between D(pr) and the

generalized Hamming weights of linear code C_ is given in the following theorem.



Theorem 1.1 [1] For a linear code C_ defined by H_, i.e., the parity check matrix has r

rows, if D (T) d*T-d'+h+l < -- 1, then the h-th generalized Hamming weight dh(C_) is at least

d', i.e., dh(C_) > d*.

From the above theorem, we can see that an upper bound on the number of intersection

points of two or more polynomials, D(v_), can be used to obtain the lower bound on the

generalized Hamming weight of a linear code. A generalized Bezout theorem is a good tool

to determine the number of intersection points (common roots) of polynomials.

Definition 1.4 Let f,(x,y), for# = 1,2,...,p, be polynomials in x and y. Without loss of

the generality, degxfl >__degxf2 >_ "" >_ deg_:fp, and let degxfl = m and degxf2 = n, where

deg_f, indicates the maximal i such that the monomial xiy j is a term in f,. We define the

x-resultant matrix of these p curves or polynomials as the following E x (m + n) matrix,
where E v= Eu=l (m + n - deg_:fu ) and s = deg_f;:

a(1) a_1) a(ml)0 0
0 a (1) a_1) a(ml)0 0

0 0 0 a(1) a_1) a_ )

a_2) a_2) a(2)0 0 0
0 a(2) a_2) a(2) 0 0

o 0 o a(:)a?) a?)

a_v) 0 0 0

a! v) 0 0

o o o a(op) a?) a_)

Let R(y) = Resz(fl, f2,"', fp) be the non-zero determinant of nonsingular submatrix

with the smallest degree of y of the x-resultant matrix. R(y) is called the x-resultant of

polynomials fl, f2, "", and fv"

Theorem 1.2 [1] The number of distinct points of the intersection of f,(x,y) without

common components, for # = 1,2, ...,p >_ n, is at most equal to the degree of their resultant

R(y), i.e., degR(y).

For polynomials in n-dimensional spaces, we define the resultant by applying two-

dimensional definition in the following way:



Forp _> n, consider the curve defined by

fx(xl,z2,'",xn) = O,

f_(zl, x2,..., z_) = o,

fp(xl, x2,---, z_) = o.

First, we consider the first two polynomials only.

(1)

fl(xl,x2,'",x_) = O,f:(xl,x2,- ,z_) O.

If we consider xa and x2 as the variables and x3,-.-,x_ as parameters, then by applying

the two-dimensional definition, we get the xl-resultant f_l)(x2,x3,.. ",Xn). Similarly, for

2 < i < p, if we consider

fl(Xl,X2,fi(Xl,X2,

we get an xl-resultant f_l__(x2, x3,...,x_).

consider the x2-resultants f_2)(x3, x4,..., x_), for i = 1, 2,..., p- 2, of the following curve

• ..,xn) = 0,

---,xn) O.

After we get aH the p- 1 xl-resultants, we

{ f_I)(x2, x3,''',Xn) : O,

f_l)(x2, z3, .,x_) o,

f_l__)i(X2,X3,'" ,Xn) O.

Repeating the above procedure, we finally get f_n-1)(Xn) , for i ---- 1,---,p -- n + 1. We

define the resultant of (1) as the one with minimum degree. In other words, we define

R(xn) = f!:-l)(xn) , where degf}o-')(x,_ ) < degffn-1)(Xn) for i= 1,-.-,p- n + 1. The

degree of R(x_) can be used to determine the number of the solutions of the system defined

by (1).

Theorem 1.3 The number of distinct points of the intersection of ftt(Zl, X2,'" ", Xn) with-

out common components, for tt = 1,2,...,p > n, is at most equal to the degree of R(xn).

In [1], a tighter bounds on D_ r) were given for two dimensional polynomials by using

a generalized Bezout theorem. With that upper bounds, lower bounds on the generalized

Hamming weights of some linear codes were obtained. In this paper, we generalize the

results in [1] to the general cases, n-dimensional cases.

In Section 2, we discuss some basic properties of polynomials and their common roots

in n-dimensional Spaces. In Section 3, we concentrate on three dimensional spaces. In that

section, the results in [1] will be generalized to three-dimensional spaces. The results in

general n-dimensional Spaces will be given in Section 4. In Section 5, we construct some

more efficient linear codes using generalized Bezout theorem and the results in Section 3.

Conclusions are given in Section 6.



2 Basic Results for Polynomials in n-dimensional Spaces

In this section, we introduce some basic properties of n-dimensional polynomials. Through-

out this section, X denotes a point in n-dimensional spaces, and f(X),g(X) and f_ denote

polynomials in X.

For n-dimensional polynomials, we have the following results:

Proposition 2.1 For any f(X) and g(X),

D{...,f(x)g(x),...} = D{...,f(x),...} + D{...,g(x),...) - D{...,f(x), g(x),...}.

Proof: The set of all roots of f(X)g(X) = 0 is a union of the set of all roots of f(X) = 0

and the set of all roots of g(X) = 0. We have Proposition 2.1. []

Example 2.1 Let f(x,y) = x + y - 1,g(x,y)= xy, and h(x,y) = x - 1. Consider

f(x,y)g(x,y)=xy(x+y-1)=O,h(x,y)=x- 1=0. (2)

Obviously, system (2) has only one solution (1, 0). Thus, D{f(_,u)g(x,y),h(x,u)) = 1.

Now, we consider the following systems

f(x,y)=x+y-l=O, (3)h(x,y)=x-1 O.

9(x,y)= xy = 0, (4)h(x,y) x- 1=0.

and

f(z,y)=x+y-l=0, (5)g(x, y) xy = O.

It is easy to check that the three systems all have one solution. Therefore,

D{f(x,y),h(x,y)} = 1, D{g(z,y),h(x,y)} = 1, and D{f(x,u),g(x,y)} = 1.

Thus, we have

D{](x,y)g(z,y),h(x,y)} = D{f(x,y),h(x,y)} + D{g(x,y),h(x,y)} -- D{](x,y),g(x,y)}.

Proposition 2.2 D{ll,...,fp} _< min{D{f,)Itt = 1,2, ...,p}.

Proof: All the points of intersection of fu(X) = O, for # = 1,2,...,p, are the points of

fu(X) = 0, respectively. Therefore, we have Proposition 2.2. []

From Proposition 2.1 and Proposition 2.2, we have:

Proposition 2.3 D{gll,...,gfp } <_ D{g) + D{ll,...,fp}.



Example 2.2 Let g(x)= z,fl(x)= x 2+z-2 and f2(x)= x 2 - x- 2. Since system

g(x)fl(x) = x(x 2 + x - 2) = 0,9(x)A(x) x(x 2) 0

has two solutions x = 0 and x = 1, we have D{gA,M: } = 2. On the other hand, system

fl(x)=x 2+x-2=0,f2(x) x2-x 2 0

has one solution x = 1. Thus, D{A,f_} = 1. Since g(x) = x = 0 has only one solution, we

also have D{9 } = 1. Thus, we have

D{afl,...,yfp } = D{g} + D{f 1,...,f,}.

If we take the same fl and f2, but different g, say, g(x) = x - 1, then we can verify that

D{gk,...,afp } < D{g} + D{k,... fp}.

Proposition 2.4 D{aA,A...fp} = D{A...j, ).

This result tells us that when consider the intersection points of some polynomials gl, g2, • • ", gp,

if a polynomial gi is the multiple of another polynomial gj, then gi can be deleted.

The following result can be used to simplify the procedure of determining the intersection

points of polynomials.

Proposition 2.5 For i,k >_ 1, D{...j(X),g(x)k,... ) = D{...,f(x)g(x),...}.

Proof: If i = 1 and k = 1, the result is trivial.

Suppose i >_ 2. From Proposition 2.1, we have

D{...,y(x)'g(x)k,...}

= D{...,f(x),... } -[- D{...,](X),-ig(X)k,... } - D{...,f(X),f(X),-ag(x)k,...}

= Di...,f(x),-_g(x)k,... }

= D{...,f(x)g(x)k,... ).

If k _> 2, similar to the above procedure, we have

D{...,y(x)'g(X)k,...}

= D{...,f(X)g(X)k,... }

= D{...,g(x),...} + D{...,l(x)g(x)k-_,... } - D{...,g(x)J(x)g(x)_-_,...}

= D{...,f(x)g(x)k-_,... }

= D{...,f(x)g(x),...}.

[]



Example 2.3 Let f(x,y,z)= x-l,g(x,y,z) = z, hl(x,y,z) = y-l, andh2(x,y,z) = z-1.

Since system

f(x,y,z)g(x,y,z)= z(x - 1)= O,
hl(X,y,z) = y- 1 = O,

h2(x,y,z)=z-1 = O,

has only one solution, we have

D{fg,hl,h2) = 1.

Now, we consider

f(x,y,z)2g(x,y,z) = z2(x - 1) 2 = O,
hl(x,y,z) = y- 1 = O,

h2(x,y,z) = z- 1 = O.

The above system also has only one solution. Therefore D{f2g2 hj,h2} = 1. Thus,

D{fg,hl,h_} = D{f2g2,hl,h2}.

Proposition 2.6 D (_) > n(r) + 1.
-- "_"p-{- 1

Proof: Assume r)(_)_p+l = D{f;_,f;2,...,f;p,f;p+_}, where Ap+l _< r. Let (X') not be in the

intersection of the p + 1 curves, i.e., f_,(. ) are not all equal to zero, for # = 1,2, ...,p,

p + 1. Without loss of the generality, let f;l(X') _ 0. We denote f_,(X') = v, for

vafp= 1,2,...,p,p+l. Thus, v1 _0. Now we define f_, =f._ - ._,forl_=2,3,...,p,p+l.
Vl

Thus, we have ]_,(X') = 0 for # = 2,3,...,p, p + 1. It is easily seen that if f_,(X*)

= 0 for # = 1,2,3,...,p,p+ 1, then f_,(X ) = 0 for p = 2,3,...,p,p+ 1. Therefore,

D_¢, _, _, } > r) (_) r) (_) + 1. The- _p+l + 1. From the definition of D (r), we have D (_) > -p+l
LJ_. 2 ,"%J),p _JAp+ l

proof is completed. []

Remark 2.1: Proposition 2.6 corresponds to the monotonicity of the generalized Hamming

weights.

Proposition 2.7 If h_+l =ftg, where l >_ 2 and deg f >_ 1. Then

D(; <_D(;).

Proof: Let D (_+1) = D{h, _ h* h* _. When h" _ h_+l Sp < r, we have
,"% Sp_ 1 _ spJ SP ' --

D (_+1) D,h .... h* < D(_)"= _-,1' ' 'p-l'h;p} -

When , h_p = h,+l = ftg, from Proposition 2.5, we have

D{pr+l) = D_B .... h* ¢_1._._
L-OSl _ , Sp_ 1 ,_ .Yl J

{h,1,'",h,p_l,(.f9) }

< D(p').

[]



3 The Generalized Hamming Weights of AG Codes from a

Class of Three-dimensional Curves

We are now interested in the following irreducible space curves [9, 10]:

{ xaTybTfl(x,y)=O,ya + zb + f2(x, y, z) -- 0, (6)

where gcd(a,b) = 1, and b2i + abj + b2k < ab for any xiyJz k being a term in fi(x,y,z).

Miura-Kamiya space curves are special cases of (6) [11]. Since they are irreducible, ans' set

containing one of these polynomials has no common non-constant factor. The results of

this section can be generalized to the space curves of (6), but for convenience of exposition

we derive them using the following Hermitian space curve over GF(24) as an example:

xS+y4+y=O,y5+z4+z =0.
(7)

For (7), we define the weights of monomials as follows: w(x) = 16, w(y) = 20, w(z) = 25

and w(xiyJz k) = 16i + 20j + 25k. We have the following sequence of monomials:

H = { 1, x, y, z, x 2, xy, y2,xz, yz, x 3 ,z 2, x2y, xy 2, x2z, y3 xyz, x4,y2z, xz 2,

x3y, yz 2, x2y 2, x3z, z3,xy 3, ... } = { xiyJzk{O <_ i <_ 15,0 _< j _< 3,0 _< k _< 3} =

{hi, h2, h3, ..., hT, ..., h2s6 }.

It can be checked that the weights of monomials in H form an ascending sequence:

W = {0, 16, 20, 25, 32, 36, 40, 41,45,48, ..., 350,355,359,375}.

Let L(r) be the linear space spanned by the first r monomials of H. Obviously hT E

L(r)- L(r- 1). If polynomials f(x,y,z), g(x,y,z) E L(r)- L(r- 1), we say f(x,y,z)

and g(x,y,z)are consistent and write f(x,y,z) ,,_ g(x,y,z). In this paper, [xiyJz k] (or

h_) denotes all polynomials that are linear combinations of xiyjz k (or hr) and its previous
r--X

monomials in which the coefficient of xiyjz k (or h_) is 1, i.e., h_ -= hr + _,=1 c.h,. Hence

we have [xiyJz k] ,_ x'y3z k and h: ,-_ h_. For convenience, let h0 = xS+ y4+ y. Sometimes, if

no confusion arises, D{h;, 1,h_,2,...,h_v } is represented as D{,\IA:,...,.\p}. From these definitions
and the results in Section II, we have the following lemmas.

Lemma 3.1 D{[_,u_k]} _< 16i + 20j + 25k.

Proof: Let hT = xiyjz k and consider any linear combination of the form h_ = xiyjz k +
r-1

_,=1 cuhu" Each monomial hu, 1 _< p < r, has a y-exponent at most 3. Thus, x 5 + y4 + y

is not a factor of h_. Since x 5 + y4 + y is irreducible, h_ and x 5 + y4 + y have no common

factors. So Theorem 1.2 applies.

The x-resultant R(y) of x s + y4 + y = 0 and xiyjz k + .... 0 is the determinant of the



followingmatrix:

1 0 0 0 0 y4+y 0 0 ... 0

0 1 0 0 0 0 y4+y 0 ... 0

0 0 1 0 0 0 0 y4+y ... 0

0 0 0 0 0 ... 1 0 ... y4+y

yjzk a(y,z) b(y,z) ... c(y,z) 0 0 ... 0 0

o yj k ... o ... o o

0 0 0 0 0 ... yJz k a(y, z) ... c(y, z)

where degy a(y, z), deg_ b(y, z), ..., degy e(y, z) are all less than 4. Thus,

R(y,z) = (yjzk)5(y 4 -t- y)i + .... y4i+Sjz5k ___ ....

Now, consider the y - resultant R(z) of yS + z 4 + z = 0 and y4i+5jz5k -t- "" ".

Theorem 1.2, R(z) is the determinant of the following matrix:

1 0 0 0 0 z4+z 0 0

0 1 0 0 0 0 z4+z 0

0 0 1 0 0 0 0 z4+z

... 0

*°* 0

o.° 0

0 0 0 0 0 ... 1 0 ... z4+z

z 5k a(y,z) b(y,z) ... c(y,z) 0 0 ... 0 0

0 z sk a(y,z) b(y,z) ... e(y,z) 0 ... 0 0

0 0 0 0 0 ... z 5k a(y,z) ... c(y,z)

From

Thus,

R(z) : z 4(4i+5j)T5(5k) -Jc .... z 16int20j'l-25k -t- ...,

and therefore, degR(z) = 16i + 20j + 25k. The proof is completed. []

Lemma 3.2 Let gcd(hA1, ..., hAp) = h. Then

D{h[1 .....h_p} -< D{h} + D{[_,_jlzk_] .....[_,,yJtzk_l},

where 0 <_ il,i:,'",it <_ 4, 0 <_jl , j_, " " , Jt <_ 3, and 0 <_ kl , ks, " " , kt <_ 3.

Pro@ Since y4 = x 5 jr y and Z 4 _ y5 + z, and applying Proposition 2.3 and Proposition 2.4,
we have Lemma 3.2. []



Example 3.1 Let h\,, .for p = 1,2, ...,6, be x6y ~2_., xbyz, x3y 2~2,_ x4y 2~_, x2Y 2~3_-, xY 2z2.

Thus, gcd(x6yz2,xbyz, x3y2z_,x4y2z, x2y2z3, xy 2z2) = xyz, i.e., h = xyz. From Proposi-

tion 2.4, x6yz2,x3y2z 2, and x2y2z 3 can be deleted. Thus, from Lemma 3.2, we have

D{[x%.2],i_%z],[_:_u2z2],[_4u2zl,[x2u2_%[xu2z21} <_ D{[xu_.]} + D{[x4l,[_3vi,[uz]}.

Definition 3.1 Let i, j and k are nonnegative integers. The determine set of a point

p = (i,j, k) is defined as

D(i,j,k)=_P(p)={(i',j',k')[ (O<_i'<_min{i-l,15},O<_j'<_3,0<_k'<_3) or

(0 <_ i' <__min{i + 4, 15},0 _< j' < rain{j, 4},0_< k' _< 3) or

(0 < i' _< rain{i-t- 4, 15},0 _< j'_< 3,0 _< k' < min{k,4})}.

__ (i- l,j-l,k- l_l

.... _ y

Figure 2.1 The determine set of point p=(i, j, k).

Let P1, P_,'", Pn be n points with nonnegative coordinators. The determine set of the n

points is defined as

z_(e_, P2,..., Pro) = z_(el) n z_(P2) n... n z_(e_).

Theorem 3.1 Let Pt = (i_,jt,kt), .fort = 1,2,---,n. Then

where ]T_(P1,P2,'' ",Pn)[ is the number of points in D(P_,P2,'" ",Pn), and t < 4,0 < it <

15, 0<jr <_3, andO < kt <_3.

It may be difficult to give an explicit formula for computing VD(P1, P2,'", Pn)]. Here,

we give a simple algorithm that is easy to implement.

Algorithm 3.1 (Computation of ]?)[) Suppose T) = Z)(P1, P2, " " ", Pn ) and Pt = (it,jr, kt ).

Step 1: Set 7?o := {(i,j,k) ] 0 < i < 15,0 _ j _< 3,0 _< k _< 3}.

Step 2: For t = 1,2,-..,n, do

For it<i<15, it<_j<_3, kt_<k<3do

If (i,j,k) e :Do, then

10



7)0:= :Do- (i, j, k).

Formin{it+4,15}<i_< 15,0_<j_<3,0_< k_<3 do

If (i,j,k) E Do, then

Do := Do - (i,j,k).

Step 3: [7?I = the number of points in Do.

Example 3.2 Using Algorithm 3.1, we have

D{[x4.2],[x_y],[y2z] } _< 30.

Lemma3.3 If D(T)= D{sl,s2 .....sp) andhtx is deleted, i.e.,t\ e {1,2,...,r}-{sl,s2,...,sp},

then all factors of htx should be deleted, i.e., it is not in the set {hsl,..., h_p} .

Proof: Suppose that

D (T) = D{_I,_ 2....._p}.

Let {tl,t2,...,tr-p} = {1, 2, ..., r} - {Sl,S2,...,Sp} . If hs, is a factor of ht_, then from
Proposition 2.4 and the definitions, we have

D (r) D{_1,_2 ....._p} = D{_1,_2 .....sp,t_) < n(r)---- _ L'p+l.

However, from Proposition 2.6, we have D (r) > r)(_) + 1. Thus, we have a contradiction.
-- _" p+l

[]

Definition 3.2 A set S of non-negative integer points ( i,j,k ) (i.e., i j and k are non-

negative integers) is called a regular set if for (i,j,k) E S, we have (i',j',k') E S for all

O<_i' <_i, O<_j' <_j andO<_ k' <_k.

Using the definition, we have the following result:

Corollary 3.1 For D{k_,k2 .....kp), if set {(i,j, k)lxiyjz k E {hi, h2, ..., h_}-{hk,, hk2,-.., hkp}}
is not a regular set, then there exists at least one set of {sl,s2,...,sp} with sp < kp, such

that D{sl,s: .....sp} >- 1 + D{kl,k_ .....kp}.

Example 3.3 Let r = 14 and p = 6. The first 14 monomials are { 1, x, y, z, x 2,

ity, y2, ZZ, yz, X z ,Z 2, x2y, xy 2, y3 }. If { ]gl, "", k6 } = { 2, 7, 11, 12, 13, 14 },

then {1,2,...,r}- {kl,...,kp} = {1,3,4,5,6,8,9,10}. Observe the set {(i,j,k)lxiyjz k •

{hl,h3, h4, hs, h6, hs, hg, hl0}} = { (0,0,0), (0,1,0), (0,0,1), (2,0,0), (1,1,0), (0,2,0),

(0, 1, 1), (3, 0, 0) } does not form a regular set, because (2, 0, 0) belongs to this set but (1,0,0)

does not. If we choose {Sl,...,s6} = {7,9,11,12,13,14}, then {1,2,...,r}-{sl,...,sp} =

{1,2,3,4,5,6,8,10}. The corresponding monomials are {1, x, y, z, x 2, xy, xz,x 3 } and

form a regular set. Obviously, D{7,9,11,12,13,14 } > 1 -t- D{2,7,11,12,13,14}-

The following theorem is the main results of this paper.
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Theorem 3.2 D_ r) < w(hr) - w(hp).

Proof: We use mathematical induction here.

(1) For h_ = 1,x,y,z, x2, xy, y2, xz, yz, it can be checked directly that

D_ _) _< w(h_)- w(hp).

(2) Suppose D if) _< w(h_)- w(hp) holds for r _< 9. Since hr+l = f2g for some f and g

when 9 _< r _< 14. By Proposition 2.7, we have

D(r+l) < D(v_) < w(h_) - w(hp) < w(hr+l) - w(hp).p -- __

(3) Now, suppose that D(p_) ___w(h_)- w(hp) for r _< 15. We prove that D_ 16) _< w(h,6) -

w(hp).

Let D(v 16) = D{h:l ...h • h" _. If s v _< 15, then
, , ap_ 1 , Sp_

DO6) = D'hL ,,, ,h*sv_l,h;p) -< D{vTM -< w(h15)- w(hp) _< w(h16)- w(hp).

If sp = 16, D{p16) = D{h;1,...,h;v_l,(zvz). }. We distinguish further the following cases.

(i) w(hsp__)5 w(yz).

D(16)

(ii) w(hsv_ , ) > w(yz), then hsv_ ,

we take h_p_ 1 = y3. Then

D(p16) =

= D{h:l,...,h,*v_ 1 ,(xvz)*)

< D.rh .... h* ,(yz)*) + D{h:_,...,h;v_a,(z)*)-- t _1 _ ' _*p--1

D{h. ,...,h;p_l,(yz). ) + D{z*}

< D(h .... h" (yz_._, + w(x)
-- _ a 1 , , sp_ 1 , *

= w(yz)- w(hp) + w(x)

<_ w(xyz)- w(hp)

= w(h,6)- w(hp).

= x 3, z 2, x2y, xy2, x2z, y3. Without loss of generality,

D{h. 1,...,h_v__,(ya).,(xvz).}

D{h:l ... h* ,,* tz,,z_*_

D{h; 1,...,h*p_a,y* }-

In order to prove D 06) _< w(h,6) - w(hv), we need to prove

-h* "_ < w(h,6) - w(hv).D{h* 1, , ,p__ Y , --

If h_, = 1 for some si, then

(8)

D*h .... h* ,._ = 0 < w(h16)- w(hp).
t _1 ' ' Sp--2 'y J

12



If there are some hs,,hs,, such that hs, = x,h_j = z, then

D_h .... h* ,._ = D{...,_.,...,_.,...,y.} = 1 < w(h16)- w(hp).

And when p = 1,D116) < w(h16) = w(h16)- w(hl). When p = 15, {h_l,..-,h_14 } C

{hi, h2,-..,hls}. Therefore, either there is a hs, = 1 or there are some hs, = x and h_j = z.

For either cases, we have 0 (16) < w(hl6) - w(hp).

Now by Proposition 2.4, we can delete the terms, which have y as a factor, from

D_h .... h* Thus, we can assume that
t 51 , , _p_l_Y*} "

D{h;1,...,h_v_i,_. } = D{z.,_. } or D{z. y. }.

Hence D_-h .... h* ,y.} = 4 _< w(hl6 ) - w(hl4) <_ W(hl6) - u,(hp).

Combining (i) and (ii), we have proved that

161< w(hi )-

(4) We now prove that when r > 15, D(p_) _< w(h_) - w(hp).

When r > 15, h_+_ = f2g for some f and g. By Proposition 2.7,

D (r+l) _< D (_) < w(h_)- w(hv) < w(h_+l)- w(hp).

Thus, the proof is completed. []

Corollary 3.2 If h_ _ hp • hu for some 1 < # < r, and D{h;} = w(hu), then

D(pr} = w(h,).

Proof: Since h_ ,._ hp. h,,

h, X{hl,h2,--.,hp}C_ {hl,.-.,hp,'--,h_}.

Thus, by Proposition 2.3, D (_) > D ...... >- {huh 1,h,h2,..-,hÈhv} - D{h_}

On the other hand, D(h;} = w(h,) = w(h_)- w(hp). From Theorem 3.2, D (r) <

w(h_)- w(hv) = D{h;). Therefore, D(p_) = D{h;} = w(h,).

Lemma 3.4 [1] If there is no 1 <_ # < r such that h_

any 1 <_ v < r with that hr, "_ hv • h_ and r' < r, then

,'_ hp • h., and r - p >_ w(h.), for

D (r) < r- p. (9)

Now we show how to find the generalized Hamming weights of codes C_ defined by H_.

For convenience of expression, we take r = 16. For

H16 = [1, x, y, z, x 2, xy, y2, xz, yz, x 3, z 2, x2y, xy 2, x2z, y3, xyz]T,

we have the following table:
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p 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

h u 1 x y z x 2 xy y2 xz yz x 3 z 2 x2y xy 2 x2z y3 xyz

w(h,) 0 16 20 25 32 36 40 41 45 48 50 52 56 57 60 61

Table 1: The weights for the first 16 monomials.

With Table 1 and Theorem 3.3, we compute

D116) = w(hl6) = 61

D_ 16) = w(h6) = 36

D_ 16) _ w(hl6)- w(hT) = 21
D(16)1o __ w(h16) - w(hlo) = 13
D(16)z3 __<w(hl_) - w(h_3) = 5
D(16)

16 -- 0

D_16) = w(hg)= 45

D_ 16) _< w(h16) - w(hs) = 29

D_16) = w(h3) = 20
D(16)11 _< w(h16)- w(h11) = 11
D(16)14 __<w(h_) - w(h14) = 4

D_ 16) = w(hs) = 41

D_ 16) = w(h4) = 25

D (16) = w(h12)= 16

D(16)
12 < w(hl6) - w(h12) = 9

D(16)15 _< w(h_6) - w(h15) = 1

Now using the monotonicity proposition, i.e. Proposition 2.6, we obtain D_ 16) = 21.

d- 1 = 16-p + h

p h=l h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=10 h=ll h=12 D_ 16)
1 16 17 18 19 20 21 22 23 24 25 26 27 61

2 15 16 17 18 19 20 21 22 23 24 25 26 45

3 14 15 16 17 18 19 20 21 22 23 24 25 41

4 13 14 15 16 17 18 19 20 21 22 23 24 36

5 12 13 14 15 16 17 18 19 20 21 22 23 < 29

6 11 12 13 14 15 16 17 18 19 20 21 22 25

7 10 11 12 13 14 15 16 17 18 19 20 21 21

8 9 10 11 12 13 14 15 16 17 18 19 20 20

9 8 9 10 11 12 13 14 15 16 17" 18" 19" 16

10 7* 8* 9* 10" 11" 12" 13" 14" 15" 16 17 18 < 13

ll 6* 7* 8* 9* 10" 11" 12" 13 14 15 16 17 < ll

12 5* 6* 7* 8* 9* 10" 11 12 13 14 15 16 < 9

13 4* 5* 6* 7* 8* 9 10 11 12 13 14 15 < 5

14 3* 4* 5 6 7 f 8 9 10 11 12 13 14 _ 4

15 2* 3* 4 5 6 7 8 9 10 11 12 13 1

16 1 2 3 4 5 6 7 8 9 I0 II 12 0

Table 2: The values of d-l=16-p+h for different h and p.

With Table 2 and Table 3, we can compute the generafized Hamming weights, di(C16),

or their bounds as follows. From the table, for each column h = i (i = 1, 2, 3, 4, ... ),

we consider the first entry that is greater than the entry at the same row and the last

column(D(p16)). According to Theorem 1.1, this entry plus 1 gives a lower bound of di(C16).

However, for some p (such as p = 5,p = 10,...,p = 14), we only have the bounds on D 06).

Thus, there may be more than one entry in one column that are possible to be the first entry

14



d- 1 = 16-p+h

p h=13 h=14 h=15 h=16 h=17 h=18 h=19 h=20 h=21 h=22 h=23 h=24 D_ _6)

1 28 29 30 31 32 33 34 35 36 37 38 39 61

2 27 28 29 30 31 32 33 34 35 36 37 38 45

3 26 27 28 29 30 31 32 33 34 35 36 37 41

4 25 26 27 28 29 30 31 32 33 34 35 36 36

5 24 25 26 27* 28* 29* 30* 31' 32* 33* 34* 35* _ 29

6 23 24 25 26* 27* 28* 29 30 31 32 33 34 25

7 2'2* 23* 24* 25 26 27 28 29 30 31 32 33 21

8 21 2'2 23 24 25 26 27 28 29 30 31 32 2(}

9 20 21 22 23 24 25 26 27 28 29 30 31 16

10 19 20 21 2'2 23 24 25 26 27 28 29 30 _ 13

11 18 19 20 21 2'2 23 24 25 26 27 28 29 < 11

12 17 18 19 20 21 22 23 24 25 26 27 28 _ 9

13 16 17 18 19 19 21 2'2 23 24 25 26 27 _ 5

14 15 16 17 18 18 20 21 2'2 23 24 25 26 _ 4

15 14 15 16 17 17 19 20 21 22 23 24 25 1

16 13 14 15 16 16 18 19 20 21 22 23 24 0

Table 3: The values of d-l=16-p+h for different h and p (continued).

that is greater than the value of D (16). In Table 2 and Table 3, all these entries are marked

by an '*'. For the same reason, in Table 4, we only give the bounds of the generalized

Hamming weights for some h.

The generalized Hamming weights of C16 are given in Table 4.

h

dh(C16)

h

dh(C16)

h

1 2

[3,8] [4,9]
10 11

18 19

[20,24]

3 4

[7,10] [8,11]
12 13

20 23

[25,28]

5 6

[9,12] [11,13]

14 15

24 25

[29,32]

7 8

[13,14] 15
16 17

[27,28] [28,291

[33,46]

16

18 19

[29,30] 31

[47,256]

dh(C16) h+12 h+13 h+14 h+15 h+16

Table 4: The generalized Hamming weights of C16.

In Table 4, h E [a, b] or dh(C16) E [a, b] means that h or dh(C16) may take any

in the interval [a, b].

integer
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4 Results in General n-dimensional Spaces

In this section, we consider the codes defined on the curves in n-dimensional space. We are

now interested in the following irreducible space curves [2]:

I f(xl,x2) =0,

f(xl,x2,x3) = O,

fn_l(Xl,Z2,''',Xn) = O,

(10)

where
as b.

fs((Xl,X2,''',Xs+l) = X s + Xs¥ 1 "kgs(Xl,X2,''',Xs+l),

gcd(a_,bs) = 1 and deg g_(xl,x2," ",xs+l) < min{as,bs}.

,2 .-x¢/'. we define theLet a point p = (il,i2,---,in) in R '_ represent a monomial X'lix 2 •

weight of the monomial as follows:

Definition 4.1 For a n-dimensional monomial h i2 i, define its weight asX 1 X 2 '''X n _ We

• _ n--1w(x?x? . . . ) = bk 1-I ak
j----1 k=n-j-I-1

Example 4.1 Let n = 6, and as = 5, b_ = 4, for s = 1,2,-..,5. Based on their weights,

we have the following increasing monomial sequence:

H = {1,Xl,X2, Xa, X4, X2,XlX2,X3, X_,XlX3, X2X3, XlX4,X3, X6, X2, X2X4,X2X2,XlX5, "''}

For convenience of expression, we consider the Hermitian-like curves over GF(24):

Xl5+x_+x:=O

x_ +x43 + xz = 0

5 4
xn_ l + xn + xn =0

(11)

This curve has N = 4 TM rational points. Thus, the code C_ defined by Hr is an [4 TM,

fi i2 ..x_- its weight is defined as4 _+1 - r]. For any monomial x 1 x 2 •

n

• i2.. "
w(x'l'x 2 .x_") = _ 4_-J5J-'ij.

j=l

When we apply Bezout's theorem to high dimensional cases, we compute the resultants

many times, once for one variable only. For example, when we consider curve (11) and poly-

nomials f_,(xl, x2," ", xn) for tt = 1, 2,-.-, p, we first consider the xl-resultant R1 (x2,..., xn-1, x_)

of

[ z_ + z_ + z2 = O

fl(Xl,X2,'",Xn) -" 0

fp(xi,x2,'" ",Xn) O.

16



Thenweconsiderthe x2-resultant R2(x3," • ", Xn-1, Xn) of

{ x_ + x_ + xa = ORl(X2,--.,Xn_3,Xn) = O.

Repeat the above precess, we finally consider the Xn_l-resultant Rn-l(Xn) of

{sXn_ 1 + x n + xn = 0

Rn_2(Xn_l,Xn) O.

Then, following the similar processes in the 3-dimensional cases, we can prove the fol-

lowing results. Our results can be generalized to the codes defined on curve (10).

Lemma 4.1 D{[x,lIx,22...x,,_]} _ Ej%I 4n-J5J-iij •

Theorem 4.1 D(__) _< w(h_) - w(hp).

be a [4n+1,4 _+1 - r] code defined by parity-cheek matrix H_ =Theorem 4.2 Let C_

[hl,h2,'",h_] T. Then

dh(CT)=h+r, ifh>_w(hT)-r+2.

Proof: By Theorem 1.1, we know that, if D_)(d_l)+ h < d- 1, then dh(C_) >_ d. Let

p = r- (d- 1)+ h, then d- 1 = r-p+ h. When h _> w(h_)- r + 2, r- 1 + h >

r-l+w(hr)-r+2=w(h_)+l_> D_ _)+1 > D{ _). This means that r-l+histhefirst

value ofr-p+hsuchthat r-p+h= d-l> D (_),whenptakes 1, 2,...,r. Thus, when

h>_w(h_)-r+2,

dh(Cr) >_ d = r - 1 + h + 1 = h + r. (12)

On the other hand, however, by the generalized Singleton bound we have

dh(Cr) <_ h q- r. (13)

From (12) and (13), we have

dh(C_) = h + r, if h _> w(hr) - r + 2.

[]

Remark 4.1: In [16] and [6], a similar result was given for the AG codes form Hermitian

curves. Our result is on the AG codes from Hermitian curves in high dimensional spaces,

and our approach does not need Riemann-Roch theorem.

Example 4.2 Consider polynomials in the four-dimensional space. WE have the following

monomial series

H = {1,xl,x2,x3, x4, x2, xlx2,x2, xlx3, x2x3, xlx4,x3, x23, x2x4,

x 21x2, x l x 2, x3x4, x_x3, x 3, XlX2X3, x24, x21x4, x 4, x2x3, . . .}.
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The corresponding weight series is

W = {0,64,80,100,125,128,144,160,164,180,189,192,200,

205,208,224,225,228,240,244,250,253,256,260,-.-}.

Let

Hr = [hi, h_,--', hr] T.

The code Cr defined by check parity matrix Hr is a ['45, 4 5 - r] code.

If we take r = 8, then w(hr)-r+2 = w(hs)-8+2 = 160-8+2 = 154. By Theorem 4.2,
we have

dh(C8) = h + 8, if h >_ 154.

For example, d154(Cs) = 162, d2oo(C8) = 208.

When r = 16, we have w(h_)- r+ 2 = w(h16)- 16+2 = 224- 16+ 2 = 210. By

Theorem 4.2, we have

dh(C16) = h + 16, ffh _ 210.

For example, d21o(C16) = 224, d3oo(C16) = 316.

5 Construction of Some Codes in High Dimensional Spaces

In the is section, we are going to give some examples to show how to use Bezout's Theorem
and the results in the above sections to construct more efficient codes in high dimensional

spaces.

The following is a useful lemma:

Lemma 5.1 The following system of equations has at most three solutions:

x2+alx+bly+o =0,
xy + a2x + b2y + c2 = O,

y2 + a3x + b3y + c3 = 0,

where ai,bi, and ci are arbitrary numbers.

Proof: The x-resultant R(y) of the system is determined by the following matrix:

1 a 1

y + a2 b2y + c2

0 y+a2

a3 y2 nu b3y nuc3

0 a3

If we just choose the first, the third and the fifth

bly + el
0

b2y + c2
0

y2 + b3y + c3

rows of the matrix, we have

1 al bly + cl ]
0 y+a2 b2y+c2

0 a3 y2 + b3y + c3

Thus, R(y) = y3 + Ay2 + By + C for some A, B and C. By Bezout's Theorem, the system
has at most three solutions. []
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5.1 Linear Codes Better Than the Improved Hermitian Codes

NowweconsiderirreducibleHermitianspacecurveoverGF(2:):

x3+y2+y=O,y3+z2+z= O.

From the definition, we have w(x) = 4, w(y) = 6

have the following increasing series of monomials:

{1, x, y, x 2, z, xy, x 3, x z, x2 y, yz,

If we take seven polynomials as {1, x, y, x 2, z,

the following theorem.

Theorem 5.1 D_ 7) < 3.

Proof:

1) It is easy to check

and w(z) = 9. Based on the weights, we

X2Z, x3 y, xyz, X3 Z, • • "}.

xy, xz + yz} and consider D_7), we have

D{[1], *, *, *}, D{[x], ,,., *}, D{[y], *, *, *} < 3.

2) Now we prove D{[x2], [z], [xy]], [xz+yz]} __ 3. It is equivalent to proving that the following

system of equations has at most three solutions:

X3 jr. y2 ___y = 0,

y3 + Z2 + Z -----0,

X2 + Alx + Bly A- C1 = 0,

z -4-A2x + B2y A- C2 = O,

xy + A3x + B3y + C3 = 0,

xz + yz + A4x + B4y + C4 = O,

Solve (17) for z and substitute it into (19), we have

(114)

(15)

(16)

(17)

(is)

(19)

x 3 + y2 + y = 0,

y3+ A_z2+ B_y2+ a_x+ B_y+ (C_+ C_)= 0,
x 2+Alx+Bly+C1 =0,

xy + A3x + B3y + C3 = O,

A2x 2 + (A2 + B2)xy + B2y 2 + (A4 + C2)x + (B4 + C2)y + C4 = 0,

Consider the determinant of the coefficient matrix of x 2, xy, y2 in (22), (23) and (24)

1 0 0

0 1 0 = B2.

A2 A2 + B2 B2

(20)

(21)

(22)

(23)
(24)
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WhenB2 ¢ 0, (22), (23) and (24) are equivalent to

I X 2 "}- alx + bly + el = O,

xy + a2x + b2y + c2 = O,

y2 + a3x + b3y + c3 = O,

From Lemma 5.1, they have at most three common roots. Thus, (20) - (24), and therefore

(14) - (18), have at most three common roots.

When B2 = 0, equations (20) - (24) becomes

x 3 + y2 + y = 0, (25)

y3 + A22x2 + a2x -[- (C_ + C2) = 0, (26)

x 2 + Alx + Bly + C1 = 0, (27)

xy + A3x + B3y + (73 = 0, (28)

A2x 2 + A2xy + B2y 2 + (A4 + C2)x + (B4 + C2)y + C4 = 0, (29)

If we multiply (26) by A_ and subtract the result from (27), we have

y3 + (A 2 + A2A1)x + A_BIy -k-(C_ + C2 + Ct) = 0. (30)

i) When (A2 + A_A1) = 0, we consider (25), (27) and (30). The x-resultant R(y)is the

following determinant

1 A1 Bly + Ca
_4n2 2 C t2R(y)= 0 y3+A_Bly+C' 0 =y6+.q_ly + ,

0 0 y3 + A22B1y + C t

where C' = C_ + C2 + C1.

Since y6 = y3 in GF(22), we have

--4n2 2 Ct2R(y) = y3 + .42/j1y + .

By Bezout's theorem, (25), (27) and (30), and therefore (25) - (29), have at most three
common roots.

ii) When (A2 + A_A1) _ O, we solve (30) for x and get

x = ay 3 + by + c, (31)

where a = 1/(A2+A_A1) _ O,b = A_B1/( A2+ A_A1), and c = (C_ +C2+C1)/( A2+ A_A1).

If b = 0, substitute x = ay 3 + c into (25), we have

(a 3 + b3 + a2c + ac2)y3 + y2 + y + c3 = 0. (32)

Obviously, equation (32) has at most three solutions.

If b 7_ 0, substitute x -- ay 3 + by + c into (27), we have

(a 2 + A1)y 3 + b2y 2 + (B1 + aA1)y + (c 2 + C1 + cA1) = 0. (33)
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Since b2 ¢ 0, equation (33) has at most three solutions. Thus, (25) - (29), and therefore

(14) - (18), have at most three common roots. []

From Riemann-Roch Theorem, the AG code with d _> 5 should have r = d + g- 1 = 10.

This means that the AG code with d > 5 is (16, 6, _> 5). In [10], an improved AG code

[16, 8, -> 5) was given. Using Theorem 5.1, a better AG code can be constructed by taking

H = [1,x,y,x:,z, xy, xz+yx] T. The new code is linear code (16, 9, _> 5). It has more

information bits and therefore is more efficient.

5.2 More Efficient Double-byte Error-correcting Codes

Consider finite field GF(q 3) = GF(43). Let /3 be a primitive element of GF(q3). Then

GF(q3) = GF(26) = {0,1, _A,/32,... /361,/362}. Suppose c_ = /321 then GF(q) = GF(4) =

{0, 1, c_, c_2}. We know that [GF(q 3) : GF(q)] = 3, GF(q 3) is a 3-dimensional vector space

over GF(q). We can prove that for any ao, al, a2 E GF(q) = {0, 1, a, 62}, ao+al/3+a2/32 = 0

if and only if a0 = al = a2 = 0, i.e., 1,L_,j32 are linear independent over GF(q). So 1,3,_ 2

is a basis of GF(q 3) over GF(q). Let x,y,z be variables. Then, (x + y/3 + z/32) q+l =

9o(X, y, z) + 91(x, Y, z)/3 + g2(x, y, z)/32, where

gl(X, y, z) = x 2 -}-_xy + o_2y 2 + yz + _xz + Z2,

g2(x, y, Z) = o_2y 2 + yz + 03xz + o_yz + o_z 2,

g3(x, y, z) = xz + axy + a2y 2 + a2yz + z 2.

Obviously, gl (x, y, z), g2(x, y, z) and 93(x, y, z) are polynomials with three variables and

coefficients in GF(q). On the other hand, since

((x + y/3 +/32)q2+q+l) q : (x + y/3 + 32) q2Tq+l ,

(X + y/3 + /32) q2+g+a is also a polynomial with coefficients in GF(q).

Now let hi = 1, h2 = x, h3 = y, h4 = z,h_ = go(x, y, z),h6 = gl(x, y,z), h7 =

g3(x,y,z),h8 = (x + y/3 + _2) q2+q+a. For any polynomial hi,we define its evaluated

vector as hi = (hi(P1),hi(P_),'",hi(P64)) T, where P1,P2,'",P64 are the 64 points in

GF(q3), when GF(q 3) is considered as a three-dimensional vector space over GF(q). Let

H = [ha,h2,-.., h8] T. Then we have a code with parameters:

n = q3 = 64, k = 56.

By the following theorem, we know that C is an (64,56, _>5) code.

Theorem 5.2 Let H = [1,x,y,z, go(x,y,z),gl(x,y,z),g3(x,y,z),(x + y/3 + _2)q2+q+a] T.

Then D_ s) _< 3.

Proof: Let D_ 8) = D{[hxa],[h_2],[h_3],[hx4],[hx5] ).

It is easy to check that

D{[1],[.],[.],[.],[.]} -- 0 _< 3,

D(M,[.],[.],[.],[.]) _< 3,

D{M,[.],[.],[.],[.] } _< 3.
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Thus, it is sufficient to
solutions:

prove the following system of equations has at most three distinct

z+ Alx + Bly+C1 = O,

go(x, y, z) + A2x + B2y + C2 = O,

gl(x,y,z) + A3x + B3y + C3 = O,

g2( x, y, z ) + A4x + B4y + C4 = 0,

(x + yfl + zfl 2) q2+q+l + Asx + Bsy + Cs = O.

(34)

Substitute z = A1 x + B1 y -I-C1 into (x + yfl + zfl 2 ) q2+q-t-1 , and consider its part of degree
_,f?TBii3 2 _q+l Because2, which is ((1 + A,fl2)x + (/3 + Blfl2)y) q+l = (1 + A,fl2)q+*(x + y_j •

3+B132
1 + Alfl 2 7_ O, divide it by (1 + Alfl2) q+l and let c - 1+A1_- 6 GF(q3). Then (x + cy) q+l =

x 2+(c q+c)xy+c q+l. Suppose that cq+c = go+gift+g232, cq+l = ho+hlfl+h2_32,

then (x + yfl)q+l = (x + goxy + boy 2) + (glxy + hly2)fl + (g2xy + h2y2)fl 2. Thus, (34) is

equivalent to the following system of equations:

z+AlX+Bly+C1 =0,

x + goxy + hoy 2 + A'_x + B_y + C; = O,

glxy + hly 2 + A_x + B_y + C_ = 0, (35)

g2xy + h:y: + A_4x + B_y + C_ = O,

(X AC yfl -}- 2fl2) q2+q+l nt- Asx + Bsy + C5 = O.

If we can prove the following determinant is not zero, then there are three equations in

(35) such that the system of them is equivalent to the system of equations considered in

Lemma 5.1. Then, by Lemma 5.1, we know that (35) has at most three distinct solutions.

I go h0
gl hi

0 gl hi =
0 g2 h2 g2 h2

If it is zero, then there exist a nonzero element a 6 GF(q) such that (hi,h2) = (gl,g2).

So we have cq+l + ac q + ac = ho + ago = b 6 GF(q), and (c q+l + ac q + ac) q = bq = b, i.e.,

cq2+q + ac q: + acq = b. Add the above formulas, we obtain cq2+q + cq+l + ac q2 = ac, so

C q2+q -t- C q+l

-- cq.a --

C q2 -_- C

So cq2 = (cq) q = aq = a = cq,c qa = (cq2) q = (cq) q = cq2 = c'. On the other hand,

_+B_2 and 1,fl, fl2is ac E GF(q3), so cq3 = c and therefore, cq = c,c C GF(q), but c - l+A_OZ,

basis of GF(q3). This is impossible. So the proof is completed. []

Remark 5.1: In Theorem 7 in [17], Dumer constructed a class of codes over GF(q), where

q is a power of an odd prime. The minimum distances of these codes are greater than or

equal to 5. According to Dumer, when n = q3, the codes have the following parameters:

n = q3, r = 8, d >_ 5.

These codes are known to be optimal in the sense that no other codes with d >__5 and the

sane code lengths have fewer number of parity checks. But, unfortunately, these codes are

defined only on GF(q) for odd prime number q. Our code C has the same parameters and

is defined on GF(2a).
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6 Conclusions

Bezout's theorem was used to determine an upper bounds of the numbers of common

points of two-dimensional polynomials in [1]. With the upper bounds, lower bounds of the

minimum distance and generalized Hamming weights of linear codes were also given in [1].

In this paper, we generalize the results in [1] to n-dimensional spaces, we not only give the

upper bounds on the number of the intersection points of n-dimensional polynomials and

the lower bounds on the generalized Hamming weights, but also give the exact values of the

generalized Hamming weights dh(CT) for large enough h. With the results in this paper,

new methods for constructing more efficient linear codes can be built. They will be applied

in computer memory systems, distributed systems [14, 15], CD audio, Video disk, and CD
ROM.
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